Remarkable performance optimization of inverted p-i-n architecture perovskite solar cell with CZTS as hole transport material

نویسندگان

چکیده

Hole transport material (HTM) is a major component of perovskite solar cells (PSCs). PEDOT: PSS, an organic HTM, widely used in inverted (p-i-n) PSCs. While PSS unstable, expensive and it's acidic nature could deteriorate the absorber. Copper zinc tin sulphide (CZTS), inorganic semiconductor can be as HTM due to its properties such low cost, ease synthesis high hole mobility. In this work, device simulation PSC was performed with CZTS exploit maximum capability. Remarkable power conversion efficiency (PCE) 25.43% achieved after optimizing performance. Device performance strongly affected by thickness electron affinity well diffusion length carriers. PCE real fabricated also found 9.72%. This work demonstrates promising candidate replace from both experimental theoretical perspectives.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comprehensive device modelling of perovskite solar cell with inorganic copper iodide as hole transport material

Hole transport material (HTM) plays an important role in the efficiency and stability of perovskite solar cells (PSCs). Spiro-MeOTAD, the commonly used HTM, is costly and can be easily degraded by heat and moisture, thus offering hindrance to commercialize PSCs. There is dire need to find an alternate inorganic and stable HTM to exploit PSCs with their maximum capability. In this paper, a compr...

متن کامل

Hybrid UV-Ozone-Treated rGO-PEDOT:PSS as an Efficient Hole Transport Material in Inverted Planar Perovskite Solar Cells

Inverted planar perovskite solar cells (PSCs), which are regarded as promising devices for new generation of photovoltaic systems, show many advantages, such as low-temperature film formation, low-cost fabrication, and smaller hysteresis compared with those of traditional n-i-p PSCs. As an important carrier transport layer in PSCs, the hole transport layer (HTL) considerably affects the device ...

متن کامل

Hole-Transport Materials for Perovskite Solar Cells.

The pressure to move towards renewable energy has inspired researchers to look for ideas in photovoltaics that may lead to a major breakthrough. Recently the use of perovskites as a light harvester has lead to stunning progress. The power conversion efficiency of perovskite solar cells is now approaching parity (>22 %) with that of the established technology which took decades to reach this lev...

متن کامل

High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly(ethylenedioxythiophene) as a Hole-Transporting Material

Herein, we successfully applied a facile in-situ solid-state synthesis of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) as a HTM, directly on top of the perovskite layer, in conventional mesoscopic perovskite solar cells (PSCs) (n-i-p structure). The fabrication of the PEDOT film only involved a very simple in-situ solid-state polymerisation step from a monomer 2,5-dibromo-3,4-eth...

متن کامل

Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells

UNLABELLED Organic-inorganic hybrid perovskite materials offer the potential for realization of low-cost and flexible next-generation solar cells fabricated by low-temperature solution processing. Although efficiencies of perovskite solar cells have dramatically improved up to 19% within the past 5 years, there is still considerable room for further improvement in device efficiency and stabilit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physica B-condensed Matter

سال: 2021

ISSN: ['1873-2135', '0921-4526']

DOI: https://doi.org/10.1016/j.physb.2021.413270